Bernard Wong
  • Software Engineer
  • Problems
    • Lowest Common Ancestor of a Binary Tree
    • Longest Substring Without Repeating Characters
    • Longest Palindromic Substring
    • Longest Common Prefix
    • Isomorphic Strings
    • Integer to Roman
    • Frog Jump
    • Find the Difference
    • Find k closest elements to a given value
    • Longest Common Subsequence
    • Binary Search Tree from Sorted Array
    • Balanced Binary Tree
    • Sort Using Two Stacks
    • O(1) Stack
    • k-th element to last of a LinkedList
    • Dedup LinkedList
    • Check Rotated String
    • Compress String by Character Count
    • Escape HTML whitespace
    • Check String Permutation
    • Unique String
    • Container With Most Water
    • 4 Sum
    • 3 Sum Closest
    • 3 Sum
    • 2 Sum
    • Maximum Subarray
    • Nested List Weight Sum
    • Palindrome Number
    • Pow(x, n)
    • Regular Expression Matching
    • Remove Nth Node From End of List
    • Reverse Integer
    • Roman to Integer
    • Rotate Array
    • Search a 2D Matrix
    • Shortest Word Distance
    • Two Sum III - Data structure design
    • Valid Parentheses
    • ZigZag Conversion
    • Quicksort
    • Add Two Numbers
    • Best Time to Buy and Sell Stock
    • Letter Combinations of a Phone Number
  • Data Structures
    • Heap
Powered by GitBook
On this page
  1. Problems

3 Sum

Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note: The solution set must not contain duplicate triplets.

For example, given array

S = [-1, 0, 1, 2, -1, -4]

A solution set is:

[ [-1, 0, 1], [-1, -1, 2] ]
def threeSum(nums: Array[Int]):List[(Int,Int,Int)] = {
  scala.util.Sorting.quickSort(nums)
  var i,j,k,target: Int = 0
  j = nums.length - 1
  var ret = List[(Int,Int,Int)]()
  for (i <- 0 until nums.length) {
    k = i + 1
    j = nums.length - 1
    target = 0 - nums(i)
    while (k < j) {
      nums(j) + nums(k) match {
        case n if n == target => {
          ret = Tuple3(nums(i),nums(k),nums(j)) :: ret
          while (k < j && nums(k) == nums(k+1)) k += 1
          while (k < j && nums(j) == nums(j-1)) j -= 1
          j -= 1
          k += 1
        }
        case n if n > target => j -= 1
        case n if n < target => k += 1
      }
    }
  }
  ret
}

threeSum(Array(0,-1,2,3,4,5,6,1))

Previous3 Sum ClosestNext2 Sum

Last updated 6 years ago